
Slurm Operator

Skyler Malinowski
Alan Mutschelknaus
Marlow Warnicke



What is Slinky?

A collection of projects and initiatives to enable Slurm on Kubernetes:

● Slurm-operator
○ Manage Slurm nodes in Kubernetes

● Slurm-bridge
○ Enable Slurm scheduling of Kubernetes Pods

● Kubernetes Tooling
○ Helm Charts
○ Container Images

● Future work



Cloud Native

● Underlying software is immutable
● Users are not systems experts, do not 

think in terms of parallel
○ Limited tolerance for complexity

● Users share nodes
○ Can introduce jitter
○ Can blow through bandwidth

● Assumption of heterogeneous nodes
● Not a ton of attention given to network 

topology

HPC vs. Cloud Native - Historical Assumptions

HPC

● Underlying software is mutable
○ Users assume fine-grained control

● Users are often systems experts that 
understand infrastructure
○ Have a tolerance for complexity

● Access to compute handled by a 
resource manager or scheduling system

● Users own the node entirely during 
computation

● Assumption of node homogeneity



Domain Pools

● Kubernetes manages its nodes, 
running a kubelet

● Slurm manages its nodes, running 
a slurmd

● Slinky tooling will manage scaling 
Slurm nodes
○ Slurm Operator



Why Slurm Operator

● Kubernetes lacks fine-grained control of native resources (CPU, Memory)
○ HPC and AI training workloads are inefficient
○ Need to build the infrastructure to get this capability

● Ability to have fast scheduling that is not possible in kubelet
● Ability to use both Kubernetes and Slurm workloads on the same set of nodes

○ Do not need to separate the clusters!



Slurm Operator



Requirements

● Can run Slurm and Kubernetes workloads on pools of nodes
● Reconcile Kubernetes and Slurm as the source of truth

○ Propagate Slurm node state bidirectionally
● Support dynamic scale-in and scale-out of Slurm nodes
● Support most Slurm Scheduling features



Restrictions

● Configure Kubernetes with static CPU management policy, which only allows for pinned 
cores, but not positioning or affinity
○ Properly constrain hwloc view of the node

● Disable cgroups within Slurm
○ Kubernetes does not natively allow delegation of cgroup sub-tree to pod
○ Slurmd cannot constrain slurmstepd via cgroups

● Should configure Slurm partitions with OverSubscribe=Exclusive
○ The slurmd (pod) can get Out of Memory (OOM) and killed because of user jobs!

● Pod-to-pod connections will still be through the regular Container Network Interface (CNI)



Big Picture

1. Install Slinky Custom Resource 
Definitions (CRDs)

2. Add/Delete/Update Slinky 
Custom Resource (CR)

3. Network Communication



Slurm Operator

1. User installs Slinky CRs
2. Cluster Controller creates Slurm Client 

from Cluster CR
3. Slurm Client starts informer to poll Slurm 

resources
4. NodeSet Controller creates NodeSet 

Pods from NodeSet CR
a. The slurmd registers to 

slurmctld on startup
5. NodeSet Controller terminates NodeSet 

Pod after fully draining Slurm node
a. NodeSet Pod deletes itself from 

Slurm on preStop



Slurm Cluster Scaling



Auto-Scale NodeSet

1. Metrics are gathered and exported.
2. HPA scales CR replicas based on read 

metrics and defined policy.
3. Slurm-Operator reconciles CR changes, 

scaling in or out NodeSet Pods.



Demo Screenshots







Future Work



Future Work

● Slurm scheduler component
● Slurm finer-grained management of kubelet resource allocations (e.g. CPUs, GPUs, Core 

pinning)
○ Current Kubernetes cannot mix pinned and unpinned cores, let alone more complex 

versions of core assignment
○ Increase pluggable infrastructure of Kubernetes - current CPU and memory 

manager leaves much to be desired
● Network Topology Aware Scheduling in Slurm

○ Using NFD combined with Slurm internals
● Add Slurm scheduling extension to handle resource scheduling for the cluster

○ Map current scheduling concepts not in Slurm, e.g. affinity/anti-affinity



Questions?





Extended Reading



Use Cases - Immediate

● Ephemeral Slurm Clusters in the Cloud
○ Consistent user experience regardless of cloud vendor
○ Easy to plug in underlying infrastructure and just work

● Running traditional HPC workloads without needing to translate into Kubernetes pods
○ Currently, many workloads in this space, including: weather; genomics; scientific 

computing
○ Fine grained resource allocation and management
○ Efficient execution of multi-node workloads

■ E.g., AI/ML Training

Initial Slinky demo demonstrates these use cases by running an AI Benchmark on an ephemeral 
Slurm cluster



Use Cases - Immediate 

● For a hybrid compute environment, coordinate workloads running in Kubernetes and Slurm 
to allow for efficient sharing of resources
○ Intended approach is to provide a Kubernetes scheduling plugin that defers 

scheduling decisions to Slurm, allowing Slurm to have a complete view of both K8s 
and Slurm workloads



Use Cases - Future

● Schedule AI/ML Training, Single and Multi-node Inference in Kubernetes Clusters with 
minimal translation
○ Longer-term, support training operations in a Cloud-Native environment
○ Key obstacles:

■ fine-grained native resource allocation and management
■ fine-grained accelerator allocation and management
■ DRA headed in this direction

● Optimal resource use
○ Bin packing - maximize utilization of node resources
○ CPU Affinity management - avoid conflicts between pods



Slurm Daemons

● Slurmctld
○ Slurm Control-Plane
○ Slurm API

■ Slurm Daemon
■ Client Commands

● Slurmd
○ Slurm Compute Node Agent

● Slurmstepd
○ Slurm Job Agent

● Slurmrestd
○ Slurm REST API

● Slurmdbd
○ Slurm Database Agent

● Sackd
○ Slurm Auth/Cred Agent



Jobs

1. User can be authenticated with Slurm
2. User submits a Slurm job.
3. Job runs until completion.



Slurm: Kubernetes + non-Kubernetes

1. References a resource
2. Network Communication

● Slurm components (e.g. slurmctld, 
slurmd, slurmrestd, slurmdbd) can reside 
anywhere
○ Kubernetes
○ Bare-metal
○ Virtual Machine

● Communication is key!



Slurm Helm Chart


